import os import discord from dotenv import load_dotenv import random import re # GENERATE #!/usr/bin/env python3 import fire import json import os import numpy as np import tensorflow.compat.v1 as tf import model, sample, encoder def sample_model( model_name='h5', seed=None, nsamples=1, batch_size=1, length=250, temperature=1, top_k=0, top_p=1, models_dir='models', ): """ Run the sample_model :model_name=124M : String, which model to use :seed=None : Integer seed for random number generators, fix seed to reproduce results :nsamples=0 : Number of samples to return, if 0, continues to generate samples indefinately. :batch_size=1 : Number of batches (only affects speed/memory). :length=None : Number of tokens in generated text, if None (default), is determined by model hyperparameters :temperature=1 : Float value controlling randomness in boltzmann distribution. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions. :top_k=0 : Integer value controlling diversity. 1 means only 1 word is considered for each step (token), resulting in deterministic completions, while 40 means 40 words are considered at each step. 0 (default) is a special setting meaning no restrictions. 40 generally is a good value. :models_dir : path to parent folder containing model subfolders (i.e. contains the folder) """ models_dir = os.path.expanduser(os.path.expandvars(models_dir)) enc = encoder.get_encoder(model_name, models_dir) hparams = model.default_hparams() with open(os.path.join(models_dir, model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) if length is None: length = hparams.n_ctx elif length > hparams.n_ctx: raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) with tf.Session(graph=tf.Graph()) as sess: np.random.seed(seed) tf.set_random_seed(seed) output = sample.sample_sequence( hparams=hparams, length=length, start_token=enc.encoder['<|endoftext|>'], batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p )[:, 1:] saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name)) saver.restore(sess, ckpt) generated = 0 while nsamples == 0 or generated < nsamples: out = sess.run(output) for i in range(batch_size): generated += batch_size text = '```' text += enc.decode(out[i]) text += '```' #print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40) print(text) return text # RESPOND def interact_model( model_name='h5', seed=None, nsamples=1, batch_size=1, length=100, temperature=1, top_k=0, top_p=1, models_dir='models', raw_text='test', inline = True ): """ Interactively run the model :model_name=124M : String, which model to use :seed=None : Integer seed for random number generators, fix seed to reproduce results :nsamples=1 : Number of samples to return total :batch_size=1 : Number of batches (only affects speed/memory). Must divide nsamples. :length=None : Number of tokens in generated text, if None (default), is determined by model hyperparameters :temperature=1 : Float value controlling randomness in boltzmann distribution. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions. :top_k=0 : Integer value controlling diversity. 1 means only 1 word is considered for each step (token), resulting in deterministic completions, while 40 means 40 words are considered at each step. 0 (default) is a special setting meaning no restrictions. 40 generally is a good value. :models_dir : path to parent folder containing model subfolders (i.e. contains the folder) """ models_dir = os.path.expanduser(os.path.expandvars(models_dir)) if batch_size is None: batch_size = 1 assert nsamples % batch_size == 0 enc = encoder.get_encoder(model_name, models_dir) hparams = model.default_hparams() with open(os.path.join(models_dir, model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) if length is None: length = hparams.n_ctx // 2 elif length > hparams.n_ctx: raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) with tf.Session(graph=tf.Graph()) as sess: context = tf.placeholder(tf.int32, [batch_size, None]) np.random.seed(seed) tf.set_random_seed(seed) output = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p ) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name)) saver.restore(sess, ckpt) # Generation Code context_tokens = enc.encode(raw_text) generated = 0 for _ in range(nsamples // batch_size): out = sess.run(output, feed_dict={ context: [context_tokens for _ in range(batch_size)] })[:, len(context_tokens):] for i in range(batch_size): generated += 1 text = '' if inline: text = '```' text += enc.decode(out[i]) if inline: text += '```' return text print("=" * 80) # DISCORD BOT intents = discord.Intents.default() intents.message_content = True client = discord.Client(intents=intents) TOKEN = ('YOUR TOKEN HERE') @client.event async def on_ready(): print("Logged in as a bot {0.user}".format(client)) @client.event async def on_message(message): if message.author == client.user: return if message.content == '!g': response = sample_model() await message.channel.send(response) elif "!g" in message.content[:2]: text = message.content[3:] content = interact_model(raw_text = text, inline = True, length = 250) index = content.find('\n') await message.channel.send(content[index:]) elif "!r" in message.content[:2]: text = message.content[3:] content = interact_model(raw_text = text, inline = False, length = 50) regexp = re.compile('^[A-z]{3} [0-9]{2}:[0-9]{2} [A-Z]{2} - .+: "(.*)"') matched = regexp.match(content) if matched: toReturn = matched.group(1) await message.channel.send(toReturn) else: index = (content.find('\n')) + 1 temp = content[index:] temp_match = regexp.match(temp) if temp_match: toReturn = temp_match.group(1) await message.channel.send(toReturn) else: await message.channel.send(temp) elif "!c" in message.content[:2]: # remove anything after \n # add text to response text = message.content[3:] content = interact_model(raw_text = text, length = 20, inline = False) sep = '\n' stripped = content.split(sep, 1)[0] toReturn = text + "" + stripped await message.channel.send(toReturn[:(len(toReturn) - 1)]) elif message.content =='!h': response = '```!g - Generates Conversation. If no prompt provided a random one will be used.\n!r - Responds to prompt\n!c - Continues prompt```' await message.channel.send(response) client.run(TOKEN)